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OutlineOutline

• Review & Overview  -- Bill Kuperman
• Oceanography -- Bruce Cornuelle
• Acoustics & Area Wide Prediction -- Mike 

Porter
• Probability and Statistics of Acoustical 

Signal Processing -- Loren Nolte
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OverviewOverview
• Sonar Equation summarizes components of performance 

prediction
• Oceanography drives the acoustics
• Acoustics Drives System Performance
• “Operator” views System Performance Prediction as 

(un)reliable guide.
• Operator USES System Performance Prediction to aid in 

Tactical Decisions (TDA). [e.g.. Expert System]
• Goal of our program: Develop a methodology to

assign a certainty or reliability measure to 
Performance Prediction which encompasses the 
uncertainties along the whole Oceanography        
-->System Model path
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System Level OverviewSystem Level Overview

Acoustic Predictions are characteristically high 
precision and low accuracy

Uncertainty – primarily inputs
Bathymetry/geoacoustics in shallow water
Sound Speed vs. range
Frequency dependence?

Variability – temporal and spatial
Range dependence
Effects of motion

Sensitivity – how does the answer depend on the parameters?

Example: 
– For flat TL vs. range environments: a few dB = lots of range uncertainty
– For steep TL vs. range environments: a few dB = little range uncertainty
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System Level OverviewSystem Level Overview

Acoustic performance is a story, not a number.  How do we tell 
the story?

To build credibility we must communicate :
Confidence bounds
Sensitivities
Critical local parameters (SVP? Bathymetry? Bottom?)

More precise acoustic prediction depending on 
algorithm.

Ranging

Sensitivity to adjustable parameters:
- Depth
- Speed
- Location

Tactics:
-detection
-counter-detection

Primarily TL
Sensitivity, Confidence, f-dep.

Range Prediction
Potential Uses: Requirements:
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Sonar ProcessingSonar Processing
Passive Acoustics:

How sensitive is TL to environmental parameters
Noise field sensitive to propagation (measurable)
Sensitive to non-environmental parameters:

• Target Depth
• Target aspect
• Radiated noise

Active Acoustics:
Two way TL makes propagation more important
Bottom reverb – dominant interference:

• Poor databases and measurement approaches
• Poor physical understanding
• Frequency dependence?

Target strength depends strongly on aspect
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ExampleExample: Minimum Detection : Minimum Detection 
LevelLevel
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Sonar EquationSonar Equation

SE   =   SL  - TL  - RD  - NL  +  AG

SE : Signal excess in dB
SL : Source level of target in dB//1uPa2

TL : Transmission loss in dB (modeled as a variable in range)
RD : Recognition differential in dB (S/N at detection threshold)
NL : Ambient noise in dB//1uPa2 /Hz
AG : Array gain in dB
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Minimum Detection Level (MDL)Minimum Detection Level (MDL)

MDL(r, θ) =  TL  +  RD  - AG  + NF
NF = 10*log {180*[NB(θ+φ)+NB(θ−φ)]/sinφ}
NB = 10NL/10 , NL ~ 77 dB (omni noise level)
RD = 0  dB,   
AG = 18 dB, 

φ: ship heading

*MDL: A target located at the position whose source level is equal to           
or  greater than MDL(r) has greater than a 50% probability of being  
detected (with a specified false alarm rate)
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Array Gain & Ambient NoiseArray Gain & Ambient Noise

Array Gain (dB) Ambient Noise (dB/1 deg)

Omni noise level = 77 dB
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Array Gain & Ambient NoiseArray Gain & Ambient Noise

Min/MaxShip Heading (20o)

Maximum

Minimum

NF-AG = 10*log {180*[NB(θ+φ)+NB(θ−φ)]/sinφ} - AG
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Discrete Ship NoiseDiscrete Ship Noise

NL - AG (dB)Ambient Noise (dB/1 deg)

Omni noise level = 80 dB
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MDL along the TrackMDL along the Track
-- Distant Shipping TrafficsDistant Shipping Traffics

-- Discrete/Distant Shipping TrafficsDiscrete/Distant Shipping Traffics
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BathymetryBathymetry
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MDL (Real Ocean)MDL (Real Ocean)

dB
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Real and  Single Profile Real and  Single Profile 
Performance PredictionPerformance Prediction
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Impact of Impact of geoacousticsgeoacoustics

• Geoacoustic variability can be an important factor in  performance 
prediction, depending on how much bottom interaction we have in a 
given environment.

• Will compare how geoacoustic variability impacts incoherent TL for two 
water column SSPs:

– Isovelocity profile (SSP 1)
– Upward refracting profile (δc=20 m/s) (SSP 2)

Cp=N(1550,20)
a=0.5dB/λ

Cp= 2000 m/sec

SSP 2
Source at 5m
Receiver at 7m
Freq=300 Hz

SSP 1 Water depth=200 m

Upper sediment sound 
speed varies as N(1550,20) H=20 m
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How How geoacousticgeoacoustic uncertainty impacts TL uncertainty impacts TL 
uncertainty in two different uncertainty in two different SSPs  SSPs  

Upward refracting SSPIsovelocity SSP

MDR=7.7±2.8 km MDR=13.3±1.9 km

Sediment sound speed
distribution (2000 realizations)

Incoherent TL

Maximum detection range
using a 70-dB Figure of Merit.

TL@20 km
The shape is non-Gaussian.
We cannot just interpolate 
TL at sound-speed endpoints.
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ConclusionsConclusions

• Oceanography and Bathymetry significantly impact 
Performance Prediction. 
Other factors: Noise Structure, System Parameters

• Single Profiles lead to poor predictors in complex regions.
• Predictions enhanced over single profiles by including 

oceanographic features and (reduced number of) profiles. 
• Uncertainty in sonar performance prediction can be 

propagated through a performance prediction model.
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Flow of uncertainty informationFlow of uncertainty information

Oceanography Acoustics Signal 
processing

Performance
prediction
(expert system)

Acoustic observations
for assimilation 

Where do we need better information?

Where
to focus 
resources

C, σc TL, σTL
Preplica

MDL,
ambiguity
surfaces

Observations
Climatology

System parameters
Bottom geoacoustic data

Acoustic data
System parameters

Operator input

Each stage feeds back information based on its 
sensitivities about which uncertainties hurt it the 
most.
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Physical Oceanography Physical Oceanography -- goalsgoals

• Produce a hierarchy of 3-D sound speed fields and associated uncertainty 
for the acoustic modelers.

• The products will tie the data together with increasingly detailed dynamic 
constraints from ROMS/TOMS.

• All methods are least-squares, and the uncertainty will be communicated 
in terms of (factored) covariances:
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Physical Oceanography Physical Oceanography -- goalsgoals

• Products:
– Climatology (Historical Mean, Covariances)
– Objective Mapping (Gauss Markov interpolation)
– Green's function assimilation
– Adjoint assimilation (not yet operational)

• Intended to complement Harvard efforts:
– Model comparisons: ROMS,HOPE,..
– Estimate comparisons: Hard constraints vs Soft
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Physical oceanography Physical oceanography -- technical issuestechnical issues

• Interfaces from oceanographic to acoustic models
– Offline first, then online
– Interpolation: resolution, smoothness and bias 

• Efficient representation of the uncertainty for both assimilation 
and acoustic modeling

• Green's functions for basis functions from factorization of the 
uncertainty covariance matrices

• Compatibility of uncertainty representations (physical vs
acoustic)

• Predictability/linearity horizons for time-dependent syntheses
• Adjoint as complementary approach - addresses poor 

convergence
• Compatibility of 3-D initializations between models
• Comparability of model evolution (gives practical estimate of 

model error)
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Physical oceanography Physical oceanography -- issues for this issues for this 
meetingmeeting

Looking for cooperation - want to avoid unwanted 
overlaps:

• Data
– Quality control
– Mapping
– Model initialization

• Topography



6/27/01 Slide 27Kuperman et al, June 2001

Model bathymetry and data locationModel bathymetry and data location
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Modeled freeModeled free--surface surface climatologyclimatology



6/27/01 Slide 29Kuperman et al, June 2001

Green’s function exampleGreen’s function example



6/27/01 Slide 30Kuperman et al, June 2001

Spatial distribution of nonSpatial distribution of non--linearitieslinearities

Assess linearity
by comparing 
two perturbations 
of opposite sign.

At 5 days,
system is
still linear.

At 9 days,
system is no 
longer linear.
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AdjointAdjoint
“Controls” u(t)

Initial 
state 
x(0)

Forward dynamical
ocean model A

Predicted
ocean x(t)

ΣAdjoint model AT

Improved “controls” u(t)Improved
initial state

x(0)

+

-
Observations
xd(t)

Improved ocean 
prediction X(t)

Forward dynamical
ocean model A
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29N Heat transport salinity sensitivity (1160m) [TW/29N Heat transport salinity sensitivity (1160m) [TW/psupsu]]
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Internal Wave Ocean VariabilityInternal Wave Ocean Variability
• Oceanographic Model

– Input: 
• Ocean model:  Range/Time dependent CTD-Data
• Quantities:  N(r,t), dc/dz(r,t), deltac(r,c)

– Two Internal Wave models
• Modified GM (Yang, Colosi and Brown)
• Solitary Waves

– Sound Speed Variability 
• c(r,t) = c0(r,t) + dcGM(r,t) + dcSoliton(r,t)

• Acoustic Effects of IW variability
– TL (Broadband PE Modeling)

• Spatial Dependence of TL
• Frequency Dependence

– System level effects
• TL Variability
• Array Gain (Signal Degradation)
• Noise Gain
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AcousticsAcoustics

Objectives
I. Suite of models for rapidly producing TL or pressure field and their 

uncertainty (Monte Carlo)
II. Reducing uncertainty by exploiting acoustic observables and feeding 

back to assimilation system

Approach: ‘environmental endpoints’ for
– Modes (KRAKEN, KRAKEN3D/Wide-area Rapid Acoustic 

Prediction)
– Rays/Beams (BELLHOP)
– Parabolic equation (RAM)
– Wavenumber integration (SCOOTER)
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Environmental Basis Functions (Environmental Basis Functions (EOFsEOFs))

An ensemble of SSPs is decomposed into a set of basis functions

which progressively capture the variation and are used to generate SSP realizations
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Environmental endpoints: Environmental endpoints: 
Modal formulationModal formulation

• Characterize ocean uncertainty as a mean environmental 
basis functions:

• Pressure can be written

but p is not very linear

• Modes:

• Wavenumbers are linear: 

• Range-dependent and 3D extension is straightforward (in the 
adiabatic approximation)
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3D Generalization: Construct N, 3D Generalization: Construct N, 
volumetric basis functionsvolumetric basis functions

Gulf Stream scenario Environmental basis functions
(2 of N)
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Environmental Endpoints:Environmental Endpoints:
Ray/beam tracing formulationRay/beam tracing formulation
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Eigenray amplitudes, Aj, and travel times, tj, are linearized, e.g.:
tj = s tj

A + (1-s) tj
B
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Closing the loop: Closing the loop: AdjointsAdjoints
ROMS initialization

Adjoint back-
propagation

Correct initial conditions
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Proposed ‘through the sensor’ Proposed ‘through the sensor’ 
observables observables (that are also linear)(that are also linear)
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• 1/3-octave averaged intensity
(traversing ship maps out the environment 
through its intensity pattern)

• Auto-correlation/cross-correlation
of channel impulse response

• Beta (slopes of the bathtub patterns)

All of the above are observable on towed-arrays as surface ships cross the scene
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Example: Hydra sea testExample: Hydra sea test
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Limits to Sonar Performance in an Limits to Sonar Performance in an 
Uncertain OceanUncertain Ocean

Objective:
• To efficiently incorporate statistical characterizations of oceanographic uncertainty into 

detection performance bounds that are at least 10 dB more accurate than the 
conventional SONAR equation.

Summary:
• The classic SONAR equation, derived assuming a known ocean, can give erroneous performance 

predictions when the propagation environment is mismatched.
• Earliest work to incorporate environmental uncertainty into sonar prediction, performed by Bangs 

and Schultheiss (1971) and Cox (1973), was limited to Gaussian acoustic wavefront models without 
direct coupling to oceanographic uncertainty.

• Cramer-Rao-type bounds for source localization in an uncertain ocean studied by Baggeroer et.al. 
(1988), Li and Schultheiss (1993), and Narasimhan and Krolik (1995) are only tight at high SNR.

• Richardson and Nolte (1991) considered the source localization problem in an uncertain ocean using 
a Bayesian formulation which is readily adaptable to the prediction of detection performance.

• In this project, Nolte will examine bounds on optimal detection performance by Monte Carlo 
evaluation of likelihood ratio tests over ensembles of realistically simulated ocean realizations.

• In order to facilitate in situ performance prediction, Krolik will develop reduced-dimension 
representations of random oceanographic state variables which will facilitate efficient computation of 
sonar performance in uncertain ocean environments.
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Performance Prediction Beyond the Performance Prediction Beyond the 
SONAR EquationSONAR Equation

• Sonar detection formulated as a hypothesis testing problem where the likelihood ratio test (LRT) test,  
λ(x,θ), depends on array data x and hypothesized target location, θ

• Detection performance characterized by receiver operating characteristic (ROC) which requires 
estimation of 

Pd (θ ) = Pr ( λ>γ  θ, H1 )  vs.  PFA = Pr ( λ>γ  H0 ).
• Performance in an uncertain ocean characterized by 

where the gk are Monte Carlo realizations of the ocean parameters.
• Classic SONAR equation uses a single ocean realization (M=1).  Direct approach in uncertain 

environment requires large M to ensure critical ocean features represented.  

1
1

ˆ ( ) Pr( | , , )
M

d m
m

P Hθ λ γ θ
=

= >∑ g

Generate M
Ocean Realizations

Detection Probability
vs. Bearing/Range/Depth

Grid Theater of
Operation

Predict Acoustic Wavefronts
at Array for N Target Locations

Monte Carlo CDF of
Detection Statistic
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Example ROC Performance SurfaceExample ROC Performance Surface
Uncertain bottom speed, 
deterministic mismatch
Uncertain bottom speed, optimum robust

Known ocean, matched
Uncertain bottom speed, 
mean ocean matched
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ReducedReduced--Dimension Representation Dimension Representation 
of Ocean Uncertaintyof Ocean Uncertainty

• To reduce the number, M, of ocean realizations needed “on-line”, determine a  reduced 
dimension basis “off-line” which captures salient sound-speed profile characteristics.

• For example, suppose Z(g) = [E(λθ1, g, H1), …, E(λθs, g, H1)] determines 
probability of detection for length N ocean state vector, g, over a fine grid of 
hypothesized source positions.

• Reduced-dimension representation for the environment involves finding  L<N basis 
vectors for ocean uncertainty, U=[u1,M...M,uL] , which minimizes:

J = Eg  (  |z(UU+g) - z(g)|2  )

• For illustrative purposes only, if  z=H(g), then this problem is equivalent to finding U
that minimizes:

J = H (I - UU+) Cov(g) (I - UU+) H+.
• Optimum basis involves trade-off between being in the span of dominant eigenvectors 

of  Cov(g) (which would be Karhunen-Loeve basis) versus the span of  H (sensitivity 
to transformation from ocean state to sonar detection statistic).
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Example of Efficient Basis Example of Efficient Basis 
Selection in Refractivity EstimationSelection in Refractivity Estimation

• In recent work, we have worked analogous problem of finding best bases for microwave 
refractivity estimation using low-angle radar clutter backscattered from the sea surface.

• Dominant refractivity eigenvectors for KL (upper) and generalized KL bases (lower). 
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• Note that second basis vector for GKLT much more efficiently captures profile 
characteristics which affect propagation in a surface-based duct
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